Rows to Columns
Aggregating
Aggregating refers to transformations that take values like theseGROUP_KEY PIVOT_KEY VAL
---------- ---------- ----------
G0 P0 10
G0 P1 5
G0 P1 3
G0 P2 20
G0 P2 6
G1 P1 9
G1 P1 (null)
G1 P2 (null)
G1 P2 5
G2 (null) 4
G2 (null) 7
G2 (null) 10
(null) P0 15
(null) P2 (null)
(null) (null) (null)
and aggregate them into a crosstab matrix like this. GROUP_KEY P0_SUM P1_SUM P2_SUM UNASSIGNED_SUM
---------- ---------- ---------- ---------- --------------
G0 10 8 26
G1 9 5
G2 21
(null) 15
This transformation is commonly referred to as "pivoting" or creating a "crosstab" report. Transposing
Transposing refers to transformations that take values like theseGROUP_KEY PIVOT_KEY VAL
---------- ---------- ----------
G0 P0 a
G0 P1 A
G0 P2 1
G0 (null) xyz
G1 P0 b
G1 P1 B
G1 P2 (null)
(null) P0 c
(null) P2 3
(null) (null) (null)
and rearrange them into a matrix like this. GROUP_KEY P0 P1 P2 UNASSIGNED
---------- ---------- ---------- ---------- ----------
G0 a A 1 xyz
G1 b B
(null) c 3
This transformation is also commonly referred to as "pivoting" or creating a "crosstab" report. Distributing
Distributing refers to transformations that take values like theseGROUP_KEY VAL
---------- ----------
G8 a
G8 b
G8 c
G8 d
G8 e
G8 f
G8 g
G8 h
and rearrange them over an arbitrary number of columns like as in result, which spreads values across three columns ordered from left to right GROUP_KEY COL_0 COL_1 COL_2
---------- ---------- ---------- ----------
G8 a b c
G8 d e f
G8 g h
or this result, which spreads values across two columns ordered from top to bottom (aka "newspaper column style"). GROUP_KEY COL_0 COL_1
---------- ---------- ----------
G8 a e
G8 b f
G8 c g
G8 d h
Aggregating Values (11g)
This topic demonstrates how to take values from multiple rows under a single column, like those in VAL below
GROUP_KEY PIVOT_KEY VAL
---------- ---------- ----------
G0 P0 10
G0 P1 5
G0 P1 3
G0 P2 20
G0 P2 6
G1 P1 9
G1 P1 (null)
G1 P2 (null)
G1 P2 5
G2 (null) 4
G2 (null) 7
G2 (null) 10
(null) P0 15
(null) P2 (null)
(null) (null) (null)
and display aggregate results in a matrix, like this one which displays VAL sums in each cell.
GROUP_KEY P0_SUM P1_SUM P2_SUM UNASSIGNED_SUM
---------- ---------- ---------- ---------- --------------
G0 10 8 26
G1 9 5
G2 21
(null) 15
Non-null Pivot Keys
For the non-null pivot keys (P0, P1, and P2) the result is easily obtained using the SELECT command's PIVOT clause, which was first introduced in Oracle 11g for exactly these types of queries.
select
group_key ,
p0_sum ,
p1_sum ,
p2_sum
from
t2 pivot
( sum(val)
for pivot_key in
(
'P0' as p0_sum ,
'P1' as p1_sum ,
'P2' as p2_sum
)
)
order by
group_key
;
GROUP_KEY P0_SUM P1_SUM P2_SUM
---------- ---------- ---------- ----------
G0 10 8 26
G1 9 5
G2
(null) 15
Note how the query does not use a GROUP BY clause even though it includes the aggregate function SUM(). This is because with pivot queries Oracle implicitly groups by any column not in the PIVOT clause, e.g. GROUP_KEY, plus each value specified in the IN clause, e.g. 'P0', 'P1', 'P2'.
NULL Pivot Keys
To generate the UNASSIGNED_SUM column for values with null pivot keys our first inclination would be to use syntax such as this
select
group_key ,
unassigned_sum
from
t2 pivot
( sum(val)
for pivot_key in
( NULL AS UNASSIGNED_SUM )
)
order by
group_key
;
GROUP_KEY UNASSIGNED_SUM
---------- --------------
G0
G1
G2
(null)
but, as typically happens with nulls, the solution is not so easy. As we can see the null VAL values in our table are not considered a match to the null expression in the PIVOT IN clause.
Our next attempt proves equally fruitless.
select
group_key ,
unassigned_sum
from
t2 pivot
( sum(val)
for NVL(PIVOT_KEY,'%') in
( '%' as unassigned_sum )
)
order by
group_key
;
for NVL(PIVOT_KEY,'%') in
*
ERROR at line 7:
ORA-01738: missing IN keyword
The error is caused by the fact that the FOR clause only accepts columns, not expressions.
To generate meaningful results we need to resort to a little inline view ugliness.
select
group_key ,
p0_sum ,
p1_sum ,
p2_sum ,
unassigned_sum
from
( SELECT GROUP_KEY, NVL(PIVOT_KEY,'%') AS PIVOT_KEY, VAL FROM T2 ) pivot
( sum(val)
for pivot_key in
(
'P0' as p0_sum ,
'P1' as p1_sum ,
'P2' as p2_sum ,
'%' as unassigned_sum
)
)
order by
group_key
;
GROUP_KEY P0_SUM P1_SUM P2_SUM UNASSIGNED_SUM
---------- ---------- ---------- ---------- --------------
G0 10 8 26
G1 9 5
G2 21
(null) 15
Multiple Aggregates
If needed we can compute multiple aggregates, e.g. SUM and MAX, easily using PIVOT.
select
group_key ,
p1_sum ,
p1_max ,
p2_sum ,
p2_max
from
t2 pivot
( SUM(VAL) AS SUM ,
MAX(VAL) AS MAX
for pivot_key in
(
'P1' as p1 ,
'P2' as p2
)
)
order by
group_key
;
GROUP_KEY P1_SUM P1_MAX P2_SUM P2_MAX
---------- ---------- ---------- ---------- ----------
G0 8 5 26 20
G1 9 9 5 5
G2
(null)
The query above also demonstrates that when both a pivot key alias (e.g. "as p1") and an aggregate alias (e.g. "AS SUM") are specified the resulting column names take the following form.
(pivot key alias)_(aggregate function alias).
Aggregating Values
This topic demonstrates how to take values from multiple rows under a single column, like those in VAL belowGROUP_KEY PIVOT_KEY VAL
---------- ---------- ----------
G0 P0 10
G0 P1 5
G0 P1 3
G0 P2 20
G0 P2 6
G1 P1 9
G1 P1 (null)
G1 P2 (null)
G1 P2 5
G2 (null) 4
G2 (null) 7
G2 (null) 10
(null) P0 15
(null) P2 (null)
(null) (null) (null)
and display aggregate results in a matrix, like this one which displays VAL sums in each cell. GROUP_KEY P0_SUM P1_SUM P2_SUM UNASSIGNED_SUM
---------- ---------- ---------- ---------- --------------
G0 10 8 26
G1 9 5
G2 21
(null) 15
In Oracle 10g and earlier versions the PIVOT command used in the previous topic is not available. Fortunately we can easily achieve the desired results in any version of Oracle using the DECODE function instead. column group_key null '(null)'
select
group_key ,
sum( decode( pivot_key, 'P0', val, null ) ) as p0_sum ,
sum( decode( pivot_key, 'P1', val, null ) ) as p1_sum ,
sum( decode( pivot_key, 'P2', val, null ) ) as p2_sum ,
sum( decode( pivot_key, null, val, null ) ) as unassigned_sum
from t2
group by group_key
order by group_key
;
GROUP_KEY P0_SUM P1_SUM P2_SUM UNASSIGNED_SUM
---------- ---------- ---------- ---------- --------------
G0 10 8 26
G1 9 5
G2 21
(null) 15
Aggregate functions other than SUM can be used to provide a different analysis. The following examples display the average and maximum VAL's for each week/day combination. select
group_key ,
AVG( decode( pivot_key, 'P0', val, null ) ) as AVG_P0 ,
AVG( decode( pivot_key, 'P1', val, null ) ) as AVG_P1 ,
AVG( decode( pivot_key, 'P2', val, null ) ) as AVG_P2 ,
AVG( decode( pivot_key, null, val, null ) ) as AVG_UNASSIGNED
from t2
group by group_key
order by group_key
;
GROUP_KEY AVG_P0 AVG_P1 AVG_P2 AVG_UNASSIGNED
---------- ---------- ---------- ---------- --------------
G0 10 4 13
G1 9 5
G2 7
(null) 15
select
group_key ,
MAX( decode( pivot_key, 'P0', val, null ) ) as MAX_P0 ,
MAX( decode( pivot_key, 'P1', val, null ) ) as MAX_P1 ,
MAX( decode( pivot_key, 'P2', val, null ) ) as MAX_P2 ,
MAX( decode( pivot_key, null, val, null ) ) as MAX_UNASSIGNED
from t2
group by group_key
order by group_key
;
GROUP_KEY MAX_P0 MAX_P1 MAX_P2 MAX_UNASSIGNED
---------- ---------- ---------- ---------- --------------
G0 10 5 20
G1 9 5
G2 10
(null) 15
How it Works
This solution forms the basis for the remaining topics in this section. It is therefore important to get a solid grasp on how it works before continuing to the next topic. To do this we will consider the following queries which illustrate conceptual steps in building a MAX value solution.First let's look at a simple query of base table columns.
break on group_key skip 1 duplicates
select group_key, pivot_key, val
from t2
order by group_key, pivot_key ;
GROUP_KEY PIVOT_KEY VAL
---------- ---------- ----------
G0 P0 10
G0 P1 5
G0 P1 3
G0 P2 20
G0 P2 6
G1 P1 9
G1 P1
G1 P2
G1 P2 5
G2 4
G2 7
G2 10
(null) P0 15
(null) P2
(null)
Next we distribute VAL values across separate columns using the DECODE function. select
group_key ,
pivot_key ,
DECODE( pivot_key, 'P0', val, null ) as VAL_P0 ,
DECODE( pivot_key, 'P1', val, null ) as VAL_P1 ,
DECODE( pivot_key, 'P2', val, null ) as VAL_P2 ,
DECODE( pivot_key, null, val, null ) as VAL_UNASSIGNED
from t2
order by group_key, pivot_key ;
GROUP_KEY PIVOT_KEY VAL_P0 VAL_P1 VAL_P2 VAL_UNASSIGNED
---------- ---------- ---------- ---------- ---------- --------------
G0 P0 10
G0 P1 5
G0 P1 3
G0 P2 20
G0 P2 6
G1 P1 9
G1 P1
G1 P2
G1 P2 5
G2 4
G2 7
G2 10
(null) P0 15
(null) P2
(null)
Finally we can collapse the values under the VAL_P0, VAL_P1, VAL_P2, and VAL_UNASSIGNED columns using a GROUP BY clause plus an aggregate function like MAX. clear breaks
select
group_key ,
MAX( decode( pivot_key, 'P0', val, null ) ) as MAX_P0 ,
MAX( decode( pivot_key, 'P1', val, null ) ) as MAX_P1 ,
MAX( decode( pivot_key, 'P2', val, null ) ) as MAX_P2 ,
MAX( decode( pivot_key, null, val, null ) ) as MAX_UNASSIGNED
from t2
GROUP BY GROUP_KEY
order by group_key ;
GROUP_KEY MAX_P0 MAX_P1 MAX_P2 MAX_UNASSIGNED
---------- ---------- ---------- ---------- --------------
G0 10 5 20
G1 9 5
G2 10
(null) 15